
Distributing Quantum Programs Shot by Shot
Giuseppe Bisicchia*

Department of Computer Science
University of Pisa, Pisa, Italy
giuseppe.bisicchia@phd.unipi.it

Antonio Brogi
Department of Computer Science

University of Pisa, Pisa, Italy
antonio.brogi@unipi.it

Jose Garcia-Alonso
Quercus Software Engineering Group

University of Extremadura, Cáceres, Spain
jgaralo@unex.es

Juan M. Murillo
Quercus Software Engineering Group

University of Extremadura, Cáceres, Spain
juanmamu@unex.es

Abstract—Despite all the efforts and the continuous and
exciting daily achievements that are being made, currently
available Quantum Process Units (QPUs) still offer few qubits
and are extremely noise-sensitive. In spite of these limitations,
researchers are taking advantage of the possibilities offered by
these QPUs and trying to maximise their use. Two different
dimensions are the major focus of the current scientific work
in the area. Some works try to optimise the Quantum load
by distributing different programs on different QPUs. Other
works try to optimise the execution of a single Quantum circuit,
by cutting it into smaller fragments, making it possible to
execute circuits that are otherwise theoretically impractical for
current QPUs. In this work, we discuss a different dimension
of the distribution of quantum programs. Indeed, due to the
probabilistic nature of Quantum Mechanics, it is usually required
to iterate the execution of a Quantum program numerous times
(called shots). Leveraging this constraint, we propose taking
into account the shots as an additional dimension. We suggest
distributing the shots of a Quantum program among multiple
independent QPUs. By fully exploiting the qualities of different
QPUs, such behaviour can enable more fine-grained management
of the requirements of a Quantum application. Additionally,
multi-QPU executions significantly increase the resilience of a
Quantum program execution to QPU failures. Finally, such an
approach is very suitable to be fully customised by users. We
also propose a Domain Specific Language which allows users to
specify their needs as distribution policies, in a simpler way than
with currently available hard-coded solutions.

Index Terms—Quantum Software Engineering, Hybrid
Classical-Quantum Services, Distributed Quantum Computing

POSTER RELEVANCE

This work fits in the field of Distributed Quantum Com-
puting, a currently hot-topic in Quantum Computing. Indeed,
because of the very severe restrictions currently featured by
the available Quantum Process Units (QPUs), as well as the
very high heterogeneity and the lack of standards on the
design and development of QPUs and Quantum compilers,
researchers and practitioners are trying to make the most of
the contemporary scenario.

And it is in this context that numerous techniques are rising
to exploit the Quantum offer at its best. Such approaches
focus on either distributing the load, generated by the parallel

* Corresponding author.

submission of Quantum programs, by sending on different
QPUs different Quantum programs or on distributing a single
large Quantum program (thus impossible to execute in current
QPUs) by cutting it in smaller fragments actually executable.

The relevance of our methodology resides in proposing a
different point of view on the whole problem, by suggesting to
consider a further dimension among which to perform the dis-
tribution, and by which to get high resilience, expressiveness
and fine-grained management of the distribution decisions.

Given a Quantum program (which can also be a fragment
cut by a larger program), we propose to distribute the shots
of such a program, in such a way that different QPUs can
be asked to execute a certain amount of shots of a single
Quantum Program. Distributing the shots offers fine-grained
management of the execution performance of a given Quantum
program, making it possible to exploit the performance of
various QPUs.

Such a distribution methodology can enable a higher re-
silience to the failures of (possibly many) QPUs. Exploiting
multiple QPUs, if one (or some) of them fails, the execution
of the shots on the other ones can still suffice to obtain
useful results. Furthermore, we will show that distribution
policies on shots can be easily expressed and encoded. Indeed,
we also propose a Domain Specific Language with which
users can express constraints on the QPUs, compilers (and/or
combinations of them) to use and metrics to rank the possible
distributions. So our methodology is fully customisable and
users can express their own requirements and desires in a
simple and effective way.

Concluding, we believe that our proposal can be relevant to
the field of Quantum Computing and more in detail Quantum
Software Engineering and Distributed Quantum Computing,
offering an innovative point of view on a hot problem that
can raise interesting scientific discussions and (hopefully)
innovations.

Distributing Quantum Programs Shot by Shot*
Giuseppe Bisicchia

Department of Computer Science
University of Pisa, Pisa, Italy
giuseppe.bisicchia@phd.unipi.it

Antonio Brogi
Department of Computer Science

University of Pisa, Pisa, Italy
antonio.brogi@unipi.it

Jose Garcia-Alonso
Quercus Software Engineering Group

University of Extremadura, Cáceres, Spain
jgaralo@unex.es

Juan M. Murillo
Quercus Software Engineering Group

University of Extremadura, Cáceres, Spain
juanmamu@unex.es

Abstract—Despite all the efforts and the continuous and
exciting daily achievements that are being made, currently
available Quantum Process Units (QPUs) still offer few qubits
and are extremely noise-sensitive. In spite of these limitations,
researchers are taking advantage of the possibilities offered by
these QPUs and trying to maximise their use. Two different
dimensions are the major focus of the current scientific work
in the area. Some works try to optimise the Quantum load
by distributing different programs on different QPUs. Other
works try to optimise the execution of a single Quantum circuit,
by cutting it into smaller fragments, making it possible to
execute circuits that are otherwise theoretically impractical for
current QPUs. In this work, we discuss a different dimension
of the distribution of quantum programs. Indeed, due to the
probabilistic nature of Quantum Mechanics, it is usually required
to iterate the execution of a Quantum program numerous times
(called shots). Leveraging this constraint, we propose taking
into account the shots as an additional dimension. We suggest
distributing the shots of a Quantum program among multiple
independent QPUs. By fully exploiting the qualities of different
QPUs, such behaviour can enable more fine-grained management
of the requirements of a Quantum application. Additionally,
multi-QPU executions significantly increase the resilience of a
Quantum program execution to QPU failures. Finally, such an
approach is very suitable to be fully customised by users. We
also propose a Domain Specific Language which allows users to
specify their needs as distribution policies, in a simpler way than
with currently available hard-coded solutions.

Index Terms—Quantum Software Engineering, Hybrid
Classical-Quantum Services, Distributed Quantum Computing

I. INTRODUCTION

Nowadays, much research is being done on better, more effi-
cient Quantum Process Units (QPUs). However, current QPUs
still are very noise-sensitive and feature only a small amount

* This work is supported by the QSALUD project (EXP 00135977 /
MIG-20201059) in the lines of action of the Center for the Development
of Industrial Technology (CDTI); and by the Ministry of Economic Affairs
and Digital Transformation of the Spanish Government through the Quantum
ENIA project call – Quantum Spain project, by the European Union through
the Recovery, Transformation and Resilience Plan – NextGenerationEU within
the framework of the Digital Spain 2025 Agenda, and by UNIPI PRA 2022
64 “hOlistic Sustainable Management of distributed softWARE systems”
(OSMWARE) project funded by the University of Pisa, Italy. This work
is also part of the Grant PID2021-1240454OB-C31 funded by MCIN /AEI
/10.13039/50100011033 and by “ERDF A way of making Europe”.

of qubits. These limitations strongly restrict the computation
that can be effectively done on a QPU. But, while scientists
and engineers are working on producing better QPUs, other
researchers are trying to figure out how to make the best use
of existing available QPUs.

One very active research line is that of Distributed Quantum
Computing. More in detail, there are two main ways to actuate
such distribution. It is possible to distribute the Quantum load,
by sending different Quantum programs to different QPUs [1],
[2], or it is possible to cut bigger infeasible Quantum programs
into smaller fragments that can be performed on current
QPUs [3], [4].

In this work, we propose a change of perspective from the
state-of-the-art on Distributed Quantum Computing. Indeed,
we suggest that distributing the shots of Quantum programs
(that can also be circuits fragments) among multiple QPUs
can (1) offer a fine-grained management of Quantum programs
requirements and available QPUs, (2) improve the resilience of
Quantum programs execution to QPUs failures, and (3) enable
a more customisable and expressive methodology for the users
that can declaratively express their requirements through a
Domain Specific Language (DSL).

II. BACKGROUND

The problem of the distribution of Quantum programs is
currently a hot topic in Quantum Computing. There are two
main lines of attack researchers are following.

Various works try to optimise the load, by sending different
Quantum programs to different QPUs. The Quantum API
Gateway [1], for instance, selects the best QPU most suitable
for a given algorithm considering its architecture, the circuit’s
width and cost and time requirements. The NISQ Analyzer [2]
selects the best combination of QPU and circuit implementa-
tion considering the circuit’s input, width and depth and the
SDK used. Several extensions have been proposed (e.g., [5]
and [6]). [7] and [8] propose two quantum job schedulers both
reasoning on the estimated fidelity and waiting times. Finally,
in [9], the best combination of QPU, compiler and compiler
options are selected, through Machine learning, reasoning on
the gate and measurement operations fidelity.

The other popular research line is based on the idea of
cutting large Quantum circuits in smaller fragments that are
actually executable on the available QPUs. CutQC [3], for
instance, features a hybrid approach that cuts Quantum circuits
a distributes them onto quantum (i.e., QPU) and classical (i.e.,
CPU or GPU) platforms for co-processing. [4], instead, em-
ploys randomised measurements and classical communication
to coordinate measurement outcomes and state preparation.
Finally, with a different approach, [10] proposes to distribute
a Quantum circuit over a homogeneous network of QPUs
minimising the quantum communication cost.

To the best of our knowledge, our proposal is the first to
tackle the problem of distributing quantum programs, across
multiple QPUs, with a shot-by-shot approach. Furthermore,
our work is also the first to enable users to fully customise
their distribution policies, instead of relying on hard-coded
solutions.

III. SHOT BY SHOT DISTRIBUTION

The rationale behind our proposal is that a user-provided
circuit is. first compiled with different compilers and optimised
for different QPUs, thus generating a set of actually executable
compiled Quantum circuits. Such circuits, together with the
updated status of the available QPUs are given in input to a
reasoner which, following the user requirements, generates a
final dispatch (i.e., a set of triples each of them composed
by a QPU, a compiled circuit and a number of shots). Such
dispatch can eventually be executed by interacting with the
Quantum providers.

Relying on multiple QPUs, each of them executing only a
fraction of the shots, guarantees that if one (or even more)
of that QPUs fail then the other ones can still complete the
execution of their shots (being completely independent), still
ensuring useful results.

Furthermore, reasoning shot-by-shot enables a high level of
fine-grained management of the circuit’s requirements and the
QPUs, working with the very minimum unit of computation
and thus possibly exploiting different QPUs with different
performance to have at the end global results that leverage on
such diversity to (possibly) increase the quality of the results.

IV. EXPRESSING REQUIREMENTS DECLARATIVELY

Users can easily customise the distribution process by
expressing their requirements. With that aim, we propose a
DSL which relies on two main concepts to specify such desires
and needs. Developers can express their objectives for the
final dispatch by defining, declaratively, a set of metrics and
constraints (e.g., through a set of logic rules and predicates).

Metrics allows users to rank the final dispatches when
multiple of them are available. In such a case developers can
tell the reasoner how to order them by selecting the dispatches
that better optimise the metrics.

Constraints, instead, specify when a specific QPU and/or
compiled circuit (and/or combination of them) are accepted
and when instead must be discarded. Additionally, it is also
possible to express constraints on when a final dispatch is

accepted or not. Finally, it is possible to specify constraints
on the metrics (or combinations of them).

Such a language is designed to be simple to use and
understand but, at the same time, powerful enough to enable
users to express their desires and objectives to fits their needs,
applications and working scenarios.

V. CONCLUSIONS

In this poster, we introduced an innovative point of view on
the problem of distributing Quantum programs. Our proposal
relies on the idea of considering distributing Quantum pro-
grams (which can also be fragments cut by a larger Quantum
circuit) through a new dimension. Given a Quantum program,
we suggest distributing individually each shot of that program
based on a particular distribution policy (possibly) expressed
directly by the user through a DSL.

Such behaviour also enables a higher level of resilience to
QPUs failures, being able to have useful results also when one
(or many) QPUs fail, by relying upon the good ones.

Our proposal offers fine-grained management of Quantum
programs by distributing the shots among multiple QPUs.
Such QPUs will feature different and peculiar characteristics
and performances, therefore, with our methodology will be
possible to better exploit such Quantum offers and to better
satisfy the user requirements.

Indeed, our architecture is also accompanied by a DSL in
which the developers can express declaratively constraints on
the allowed QPUs, compilers, and combination of them as
well as possible distributions. Additionally, users can express
also a set of metrics on such distributions so as to rank them
accordingly and always select, among the valid ones, which
better fits the user needs.

Our proposal offers, then, an innovative point of view by
suggesting the distribution of Quantum programs shot-by-shot,
enabling a higher level of resilience, fine-grained management
and customisation, also offering a DSL with which users can
simply declare their requirements as distribution policies.

REFERENCES

[1] J. Garcı́a-Alonso et al., “Quantum software as a service through a
quantum API gateway,” IEEE Internet Comput., vol. 26, pp. 34–41,
2022.

[2] M. Salm et al., “The NISQ analyzer: Automating the selection of
quantum computers for quantum algorithms,” in CCIS, vol. 1310, 2020,
pp. 66–85.

[3] W. Tang et al., “Cutting quantum circuits to run on quantum and classical
platforms,” CoRR, vol. abs/2205.05836, 2022.

[4] A. Lowe et al., “Fast quantum circuit cutting with randomized measure-
ments,” Quantum, vol. 7, p. 934, 2023.

[5] M. Salm et al., “Automating the comparison of quantum compilers for
quantum circuits,” in CCIS, vol. 1429, 2021, pp. 64–80.

[6] M. Salm et al., “How to select quantum compilers and quantum
computers before compilation,” in CLOSER, 2023, pp. 172–183.

[7] G. S. Ravi et al., “Adaptive job and resource management for the
growing quantum cloud,” in IEEE QCE, 2021, pp. 301–312.

[8] M. Grossi et al., “A serverless cloud integration for quantum computing,”
CoRR, vol. abs/2107.02007, 2021.

[9] N. Quetschlich et al., “Predicting good quantum circuit compilation
options,” CoRR, vol. abs/2210.08027, 2022.

[10] R. G. Sundaram et al., “Efficient distribution of quantum circuits,” in
LIPIcs, vol. 209, 2021, pp. 41:1–41:20.

IEEE Quantum Week 2023

Distributing Quantum Programs Shot by Shot
Giuseppe Bisicchia1 Jose Garcia-Alonso2 Antonio Brogi1 Juan M. Murillo2

1University of Pisa 2University of Extremadura

We propose to distribute Quantum
Programs across multiple Quantum
Process Units (QPUs) by considering

each shot independently

Contribution

1. High resilience to QPU failures
2. Fine-grained management
3. High customisability

Key Advantages

Dispatch Policies

A set of triples (QPU, Compiled Circuit, Shots):
[(IBM Kyiv, QiskitC1, 200), (IBM Perth, QiskitC2, 300),
(Aspen-M-3, ForestC1, 750), (Aspen-M-3, ForestC2, 750)]

Dispatch Structure

Metrics to rank
successful dispatches:
Execution time,
cost, fidelity

Constraints to filter out
unsuccessful dispatches:
No simulators, only

QPUs in Europe

Contacts

Proposed Architecture

1

2

3
4

5

6

1

2

Determines
the most
suitable
dispatch

Control Plane

Performs the
dispatch and
collects the

outputs
(partial

distributions)

Data Plane

	Diapositiva 1

